Copied to
clipboard

G = C23.11D8order 128 = 27

4th non-split extension by C23 of D8 acting via D8/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C23.11D8, C24.83D4, (C2×C8)⋊7D4, C4⋊C4.88D4, (C2×D4).99D4, C22.83(C2×D8), C2.17(C8⋊D4), C2.13(C87D4), (C22×C4).145D4, C23.909(C2×D4), C2.21(C22⋊D8), C23.7Q89C2, C4.142(C4⋊D4), C22.4Q1621C2, C4.36(C4.4D4), (C22×C8).69C22, C22.215C22≀C2, C2.31(D4.7D4), C22.107(C4○D8), (C23×C4).271C22, C2.6(C22.D8), (C22×D4).76C22, C22.226(C4⋊D4), C22.135(C8⋊C22), (C22×C4).1443C23, C2.6(C23.10D4), C2.8(C23.19D4), C4.17(C22.D4), C22.124(C8.C22), C22.112(C22.D4), (C2×C2.D8)⋊7C2, (C2×C22⋊C8)⋊19C2, (C2×D4⋊C4)⋊12C2, (C2×C4⋊D4).13C2, (C2×C4).1035(C2×D4), (C2×C4).770(C4○D4), (C2×C4⋊C4).118C22, SmallGroup(128,765)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — C23.11D8
C1C2C22C2×C4C22×C4C2×C4⋊C4C23.7Q8 — C23.11D8
C1C2C22×C4 — C23.11D8
C1C23C23×C4 — C23.11D8
C1C2C2C22×C4 — C23.11D8

Generators and relations for C23.11D8
 G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, eae=ab=ba, ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bd-1 >

Subgroups: 464 in 184 conjugacy classes, 52 normal (44 characteristic)
C1, C2 [×7], C2 [×4], C4 [×4], C4 [×5], C22 [×7], C22 [×20], C8 [×3], C2×C4 [×6], C2×C4 [×17], D4 [×14], C23, C23 [×2], C23 [×14], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×5], C2×C8 [×2], C2×C8 [×5], C22×C4 [×2], C22×C4 [×9], C2×D4 [×2], C2×D4 [×13], C24, C24, C2.C42, C22⋊C8 [×2], D4⋊C4 [×4], C2.D8 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4 [×3], C4⋊D4 [×4], C22×C8 [×2], C23×C4, C22×D4, C22×D4, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×D4⋊C4 [×2], C2×C2.D8, C2×C4⋊D4, C23.11D8
Quotients: C1, C2 [×7], C22 [×7], D4 [×8], C23, D8 [×2], C2×D4 [×4], C4○D4 [×3], C22≀C2, C4⋊D4 [×3], C22.D4 [×2], C4.4D4, C2×D8, C4○D8, C8⋊C22, C8.C22, C23.10D4, C22⋊D8, D4.7D4, C87D4, C8⋊D4, C22.D8, C23.19D4, C23.11D8

Smallest permutation representation of C23.11D8
On 64 points
Generators in S64
(1 26)(2 63)(3 28)(4 57)(5 30)(6 59)(7 32)(8 61)(9 43)(10 51)(11 45)(12 53)(13 47)(14 55)(15 41)(16 49)(17 54)(18 48)(19 56)(20 42)(21 50)(22 44)(23 52)(24 46)(25 38)(27 40)(29 34)(31 36)(33 64)(35 58)(37 60)(39 62)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 60)(18 61)(19 62)(20 63)(21 64)(22 57)(23 58)(24 59)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)
(1 56)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 64)(10 57)(11 58)(12 59)(13 60)(14 61)(15 62)(16 63)(17 32)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 48)(3 7)(4 46)(6 44)(8 42)(9 32)(10 12)(11 30)(13 28)(14 16)(15 26)(17 64)(18 20)(19 62)(21 60)(22 24)(23 58)(25 27)(29 31)(33 37)(34 53)(36 51)(38 49)(40 55)(43 47)(50 54)(57 59)(61 63)

G:=sub<Sym(64)| (1,26)(2,63)(3,28)(4,57)(5,30)(6,59)(7,32)(8,61)(9,43)(10,51)(11,45)(12,53)(13,47)(14,55)(15,41)(16,49)(17,54)(18,48)(19,56)(20,42)(21,50)(22,44)(23,52)(24,46)(25,38)(27,40)(29,34)(31,36)(33,64)(35,58)(37,60)(39,62), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,64)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,48)(3,7)(4,46)(6,44)(8,42)(9,32)(10,12)(11,30)(13,28)(14,16)(15,26)(17,64)(18,20)(19,62)(21,60)(22,24)(23,58)(25,27)(29,31)(33,37)(34,53)(36,51)(38,49)(40,55)(43,47)(50,54)(57,59)(61,63)>;

G:=Group( (1,26)(2,63)(3,28)(4,57)(5,30)(6,59)(7,32)(8,61)(9,43)(10,51)(11,45)(12,53)(13,47)(14,55)(15,41)(16,49)(17,54)(18,48)(19,56)(20,42)(21,50)(22,44)(23,52)(24,46)(25,38)(27,40)(29,34)(31,36)(33,64)(35,58)(37,60)(39,62), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49), (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,64)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,48)(3,7)(4,46)(6,44)(8,42)(9,32)(10,12)(11,30)(13,28)(14,16)(15,26)(17,64)(18,20)(19,62)(21,60)(22,24)(23,58)(25,27)(29,31)(33,37)(34,53)(36,51)(38,49)(40,55)(43,47)(50,54)(57,59)(61,63) );

G=PermutationGroup([(1,26),(2,63),(3,28),(4,57),(5,30),(6,59),(7,32),(8,61),(9,43),(10,51),(11,45),(12,53),(13,47),(14,55),(15,41),(16,49),(17,54),(18,48),(19,56),(20,42),(21,50),(22,44),(23,52),(24,46),(25,38),(27,40),(29,34),(31,36),(33,64),(35,58),(37,60),(39,62)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,60),(18,61),(19,62),(20,63),(21,64),(22,57),(23,58),(24,59),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49)], [(1,56),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,64),(10,57),(11,58),(12,59),(13,60),(14,61),(15,62),(16,63),(17,32),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,48),(3,7),(4,46),(6,44),(8,42),(9,32),(10,12),(11,30),(13,28),(14,16),(15,26),(17,64),(18,20),(19,62),(21,60),(22,24),(23,58),(25,27),(29,31),(33,37),(34,53),(36,51),(38,49),(40,55),(43,47),(50,54),(57,59),(61,63)])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G···4L8A···8H
order12···222224444444···48···8
size11···144882222448···84···4

32 irreducible representations

dim11111112222222244
type++++++++++++++-
imageC1C2C2C2C2C2C2D4D4D4D4D4C4○D4D8C4○D8C8⋊C22C8.C22
kernelC23.11D8C22.4Q16C23.7Q8C2×C22⋊C8C2×D4⋊C4C2×C2.D8C2×C4⋊D4C4⋊C4C2×C8C22×C4C2×D4C24C2×C4C23C22C22C22
# reps11112112212164411

Matrix representation of C23.11D8 in GL6(𝔽17)

16160000
010000
000100
001000
000010
000001
,
1600000
0160000
0016000
0001600
000010
000001
,
1600000
0160000
001000
000100
000010
000001
,
1300000
0130000
004000
0001300
0000011
0000311
,
100000
15160000
001000
0001600
000010
0000116

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,16,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,3,0,0,0,0,11,11],[1,15,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,16] >;

C23.11D8 in GAP, Magma, Sage, TeX

C_2^3._{11}D_8
% in TeX

G:=Group("C2^3.11D8");
// GroupNames label

G:=SmallGroup(128,765);
// by ID

G=gap.SmallGroup(128,765);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,58,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*d^-1>;
// generators/relations

׿
×
𝔽